当前位置: > 三角形ABC内接于圆O,AC=BC,D为弧BC上一点,延长DA至点E,使CE=CD 求证(1) AE=BD(2)若AD+BD=根号2 CD...
题目
三角形ABC内接于圆O,AC=BC,D为弧BC上一点,延长DA至点E,使CE=CD 求证(1) AE=BD(2)若AD+BD=根号2 CD
求证 AC⊥BC

提问时间:2020-11-15

答案
很简单啊 第一问证AE=BD 只需要证△BCD≌△ACE就行了
AC=BC,CE=CD(不就有两条边了么?)
∠CAE=∠DBC(圆内接四边形的外角等于内对角) 第一问就OK了
第二问就更简单了 AE=BD 那么AD+BD=AD+AE=DE
即证明DE=根号2 CD 因为CE=CD 也就是说只需证明 ∠DCE=90°
(等腰直角三角形的斜边为直角边的根号2倍)
因为AC垂直BC 即∠ACB=90° 因为∠DCB=∠ACE 所以∠DCE=90°
(用了一下等量替换)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.