当前位置: > 二阶实矩阵A的特征值是1,2,对应的特征向量分别是 (1,1)T,(1,k)T,求k 答案是k=-1,怎么算的...
题目
二阶实矩阵A的特征值是1,2,对应的特征向量分别是 (1,1)T,(1,k)T,求k 答案是k=-1,怎么算的

提问时间:2020-11-15

答案
关于特征值与特征向量有个特殊的定理:对应于不同特征值的特征向量相互正交
所以(1,1)'与(1,k)'点乘为0
即1+k=0 所以k=-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.