当前位置: > 急!用反证法证明方程ax^2+bx+c=0“虚根成对”,即方程不可能同时有一个实根和一个虚根...
题目
急!用反证法证明方程ax^2+bx+c=0“虚根成对”,即方程不可能同时有一个实根和一个虚根
已知a,b,c都是实数且a≠0,用反证法证明方程ax^2+bx+c=0“虚根成对”,即方程不可能同时有一个实根和一个虚根
要用反证法哦~~

提问时间:2020-11-15

答案
设m实数根,n 为虚数根,
am^2+bm+c=an^2+bn+c
a(m^2-n^2)+b(m-n)=0
a(m+n)(m-n)+b(m-n)=0
(am+an+b)(m-n)=0
m-n 不可能0
am+an+b 不可能为0
所以.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.