当前位置: > 已知函数f(x)=log(2∧x-1)(a>0,且a≠1)在区间(0,1)内恒有f(x)>0,则函数y=log∨a(x²-2x-3)的单调递增区间是...
题目
已知函数f(x)=log(2∧x-1)(a>0,且a≠1)在区间(0,1)内恒有f(x)>0,则函数y=log∨a(x²-2x-3)的单调递增区间是

提问时间:2020-11-15

答案
X在区间(0,1),则有2^x-1属于(0,1),则有f(x)=loga(2^x-1)恒有f(x)>0,则说明0那么有y=loga(x^2-2x-3)的单调增区间就是函数g(x)=x^2-2x-3的减区间.
又有g(x)=(x-1)^2-4,减区间是(-无穷,1),同时有g(x)=(x-3)*(x+1)>0,得到-1故y的单调增区间是(-1,1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.