题目
怎么用泰勒公式证明
对于任意一点,最低阶的非零导数是奇数阶时,不是极值点;最低阶的非零导数是偶数阶时,是极值点,可以通过符号判断是极大值还是极小值.(这里的各阶导数不包括0阶导数即原函数)
对于任意一点,最低阶的非零导数是奇数阶时,不是极值点;最低阶的非零导数是偶数阶时,是极值点,可以通过符号判断是极大值还是极小值.(这里的各阶导数不包括0阶导数即原函数)
提问时间:2020-11-14
答案
用f^(n)(x)表示f在x的n阶导数
设n为其最低阶非零导数次数
f(x)=f(x0)+f^(n)(x0)*(x-x0)^n+o((x-x0)^n)
由于后面的皮亚诺余项相对主项是无穷小量,当x足够接近x0时 f(x)-f(x0) 的正负性 由f^(n)(x0)*(x-x0)^n的正负决定.当n是奇数时,x>x0 与xx0 与x0 则f^(n)(x0)*(x-x0)^n>0 所以在x0的一个充分小的去心邻域中
f(x)-f(x0)=f^(n)(x0)*(x-x0)^n+o((x-x0)^n)>0 即f(x)>f(x0) 所以x0为其极小值点
同理可证当n为偶数时,若f^(n)(x0)
设n为其最低阶非零导数次数
f(x)=f(x0)+f^(n)(x0)*(x-x0)^n+o((x-x0)^n)
由于后面的皮亚诺余项相对主项是无穷小量,当x足够接近x0时 f(x)-f(x0) 的正负性 由f^(n)(x0)*(x-x0)^n的正负决定.当n是奇数时,x>x0 与xx0 与x0 则f^(n)(x0)*(x-x0)^n>0 所以在x0的一个充分小的去心邻域中
f(x)-f(x0)=f^(n)(x0)*(x-x0)^n+o((x-x0)^n)>0 即f(x)>f(x0) 所以x0为其极小值点
同理可证当n为偶数时,若f^(n)(x0)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1已知偶函数f(x)在区间(0,正无穷大)上单调递增,则满足f(2x-1)小于f(1/3)的x的取值范围是?
- 2为什么温哥华海边公园里的为什么大雁不南飞,你体会到了什么
- 3代数式表示:自来水每立方m元,电每千瓦时n元,小丽家本月用水8立方米,用电100千瓦时,应交水电费?
- 4Erasmus work experience
- 5如果关于x的方程ax+12=0的解是3则不等式(a+2)x>-8的解是x?
- 6much as( ),I .could not lend him the money because I simply did not have that much spare ca...
- 7草书大王的含义是什么
- 8写一个字,使禾,木,可,力,女,天,又,未组成1个字
- 9NaCl+HCl=NaCl+H2O的反应过程是吸热还是放热?
- 10三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,求飞机被击中的概率.
热门考点