当前位置: > 设f(x)在[0,1]上连续,并设∫(0~1)f(x)dx=A,求∫(0~1)dx∫(x~1)f(x)f(y)dy....
题目
设f(x)在[0,1]上连续,并设∫(0~1)f(x)dx=A,求∫(0~1)dx∫(x~1)f(x)f(y)dy.

提问时间:2020-11-14

答案
设其原函数是F(x)
∫(0~1)f(x)dx=A=F(1)-F(0)
∫(0~1)dx∫(x~1)f(x)f(y)dy
=∫(0~1)f(x)dx∫(x~1)f(y)dy
=∫(0~1)[F(1)-F(x)]f(x)dx
=∫(0~1)[F(1)-F(x)]dF(x)
=[F(1)F(x)-1/2F^2(x)](0~1)
=F^2(1)-1/2F^2(1)-F(1)F(0)+1/2F^2(0)
=1/2F^2(1)-F(1)F(0)+1/2F^2(0)
=1/2[F(1)-F(0)]^2
=1/2A^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.