当前位置: > 如图,已知在△ABC中,AB=AC,以AB为直径作⊙O交BC于F,连接OC交⊙O于D,连接BD并延长交AC于E,BC=2AB. (1)求证:AC是⊙O的切线; (2)求AE/CD的值....
题目
如图,已知在△ABC中,AB=AC,以AB为直径作⊙O交BC于F,连接OC交⊙O于D,连接BD并延长交AC于E,BC=
2
AB.

(1)求证:AC是⊙O的切线;
(2)求
AE
CD
的值.

提问时间:2020-11-14

答案
(1)证明:连接AF,则AF⊥BC;
∵AB=AC,且AF⊥BC,
∴F是BC的中点,即CF=
1
2
BC=
2
2
AC;
在Rt△ACF中,AC=
2
FC,则∠FCA=45°;
即△ABC是等腰直角三角形,故AB⊥AC,
∵AB是⊙O的直径,
∴AC是⊙O的切线.
(2)连接AD,则AD⊥BE;
∵∠EDC=∠ODB,而∠ODB=∠OBD,
∴∠EDC=∠OBD;
由弦切角定理知:∠DAE=∠OBD,故∠EDC=∠DAE,
易得:△CDE∽△CAD,
CD
AC
DE
AD
,而
DE
AD
AE
AB

CD
AC
AE
AB
AE
CD
AB
AC

由(1)知:AB=AC,故
AE
CD
=1.
(1)连接AF,由圆周角定理知:AF⊥BC,而△ABC是等腰三角形,且BC是底边,根据等腰三角形三线合一的性质知:F是BC的中点,进而可在Rt△ACF中,根据FC、AC的比例关系求得∠FCA的度数,从而判断出△ABC是等腰直角三角形,由此可证得所求的结论.
(2)此题需要通过两步相似来解答;由弦切角定理知:∠DAE=∠ABE=∠ODB=∠EDC,由此可证得△CDE∽△CAD,得:CD:AC=DE:AD,连接AD,则△ADE∽△BAE,得:DE:AD=AE:AB,联立上述两式即可得到AE、CD的比例关系.

切线的判定.

本题考查了切线的判定,垂径定理等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.