题目
已知定义域为R的函数f(x)为奇函数,且满足f(x+2)=-f(x).当x∈(0,1]时,f(x)=2x(注:x次方)-1.
求f(x)在[-1,0)上的解析式;求f(log1/2 24)
2题
已知函数f(x)=ax+b/1+x平方,是定义在(-1,1)上的奇函数,且f(1/2)=2/5.
求a和b的值;
证明函数在定义域内是单调增函数
3题
某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨1.80元,当用水超过4吨时,超过的部分每吨3.00元.某月甲、乙两户共交水费y元,已知甲乙两户该月用水量分别为5x,3x(吨)
求y关于x的函数
若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
求f(x)在[-1,0)上的解析式;求f(log1/2 24)
2题
已知函数f(x)=ax+b/1+x平方,是定义在(-1,1)上的奇函数,且f(1/2)=2/5.
求a和b的值;
证明函数在定义域内是单调增函数
3题
某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨1.80元,当用水超过4吨时,超过的部分每吨3.00元.某月甲、乙两户共交水费y元,已知甲乙两户该月用水量分别为5x,3x(吨)
求y关于x的函数
若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
提问时间:2020-11-14
答案
1,f(x)=-2^(-x) (x∈[-1,0)) log1/2^24的值在-4到-5之间,根据函数已知条件可求f(x)=-2^(-x) (x∈[-5,-4)) f(log1/2^24)=-242,由题意得: 1/2a+b/(1+1/4)=2/5 ax+b/(1+x²)=-[-ax+b/(1+x²)] 解得a=4/5 b=0...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1the police station翻译成中文
- 2汽车附着力小于或等于牵引力,称为汽车运动的行驶条件是否正确?
- 3They want to know ___do to help us.
- 4水绵的结构图是怎样的?
- 5not any more与not any longer的区别
- 6She got her first pair of skates _ her sixth birthday.该填什么
- 7这句英语语法对吗?
- 8若关于x的不等式x2-ax-6a
- 9若m的平方等于3m(m不等于0),则m等于3,变形的依据是什么?
- 100.9673保留两位小数是?16.4238保留到两位小数是?29.6403保留到两位小数是
热门考点