题目
有关数列极限的题目
已知f(x)=(3x+1)/(x+3),若无穷数列{Xn}中,X1=2,Xn+1=f(Xn),求lim Xn
注:Xn+1中的n+1都在X的右下角.
较急,请速回!
看不懂额,感觉不对吧,另外,Xn+1-Xn=(1-Xn^2)/(Xn+3)
已知f(x)=(3x+1)/(x+3),若无穷数列{Xn}中,X1=2,Xn+1=f(Xn),求lim Xn
注:Xn+1中的n+1都在X的右下角.
较急,请速回!
看不懂额,感觉不对吧,另外,Xn+1-Xn=(1-Xn^2)/(Xn+3)
提问时间:2020-11-13
答案
说下思路吧:
1)证明Xn>1,利用Xn+1-1=2(Xn-1)/(Xn+3)〉0
2)证明Xn单调递减且有下界,从而说明此数列存在极限
Xn+1-Xn=(1-Xn^2)/(Xn+3)0
3)两边取极限假设为a,则
a=(3a+1)/(a+3),得a=1
注意:必须先证明极限存在,两边才能同时取极限
faint,你高中?单调有界数列有极限
Xn+1-Xn=f(Xn)-Xn=?你不知道?
1)证明Xn>1,利用Xn+1-1=2(Xn-1)/(Xn+3)〉0
2)证明Xn单调递减且有下界,从而说明此数列存在极限
Xn+1-Xn=(1-Xn^2)/(Xn+3)0
3)两边取极限假设为a,则
a=(3a+1)/(a+3),得a=1
注意:必须先证明极限存在,两边才能同时取极限
faint,你高中?单调有界数列有极限
Xn+1-Xn=f(Xn)-Xn=?你不知道?
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1小亮看一本故事书,已看了75页,还剩下145页没看.小亮再看多少页,就使已看的页数与剩下的页数同样多?
- 2作文--我战胜了(自己、对手、挫折、紧张骄傲.)
- 3U were a peri when you have no teeth
- 4生石灰可以和哪些类型的物质发生化学反应
- 5把土豆放进盐水里几天后为什么体积和质量会变小?
- 6一条路,全长修40米,a天后还剩下6米,这条路长多少米.
- 7Here is a p___of my family
- 8写自己家的英语短文要翻译一下.要不常的
- 9现在有12只碗,放在一个三角形玻璃板上,每边放了5只碗.请你重新摆一下,使三角形每条边上都有7只碗.
- 10一本书600页,小明用10天看完,平均每天看这本书的几分之几,每天看多少页.
热门考点
- 1用连( )带( )组成四个四字成语
- 2滔滔洪水中的群众,看到了红五星,看到了迷彩服,就像看到了他们的大救星.(联系自己的生活
- 3三峡和与朱元思书的对比文言文题,
- 4若(a+b)²=40,ab=8,则a²+b²的值为
- 5When do you getting up every morning 哪里出了错
- 6白雪歌送武判官归京中运用互文修辞写边塞寒冷的句子是什么?
- 7如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶
- 8从今天开始,231天后是几月几号
- 9"你存在我的脑海里,我的心里,我的歌声里"英文翻译
- 10畅想2011