当前位置: > 怎样证明一组勾股数组有一个数是3的倍数...
题目
怎样证明一组勾股数组有一个数是3的倍数
越快越好,10分钟内给出答案者给50分

提问时间:2020-11-13

答案
勾股数a、b、c三数中至少有一个是3的倍数.
证明:由公式
a=n2-m2
b=2mn (ma,c-a>0,c+a>0,c+a>b.
所以,b/(c+a)=(c-a)/b=m/n成立,且m0,为一有理数.
故有公式
a=k(n2-m2)
A:b=2kmn
c=(n2+m2)
为保证公式中a、b、c是正整数,k只能取使a、b、c为正整数的值,要使a、b、c互质,取k=1,由于m、n均为奇数时,n2-m2,n2+m2,2mn都有因数2,故除了m,n互质外,还要加一个条件:m,n奇偶不同,由此可得更简便的公式:
a=n2-m2
B:b=2mn (mm的正整数,则得到的a、b、c仍是勾股数组,而不一定是基础勾股数组.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.