当前位置: > 设A为m*n实矩阵,A^TA为正定矩阵,证明:线性方程组AX=0只有零解....
题目
设A为m*n实矩阵,A^TA为正定矩阵,证明:线性方程组AX=0只有零解.
资料上证明是 由于r(A^TA)≤r(n)≤n,可我不这个公式是哪里来的,还有公式是r(AB)≤r(A),r(AB)≤r(B),.
上面不懂得问题我在书上找到了,现在还有个疑问是:不是应该 r(A)≤min{m,n}吗,为什么上面公式是直接r(n)≤n呢?谁帮我解答下啊.

提问时间:2020-11-13

答案
1、因为A*A' ('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A' )≤n可以直接得到.
2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数的秩为1,0的秩为0).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.