当前位置: > 设函数f(x)=(sinwx+coswx)²+2cos²wx(w>0)的最小正周期为2π/3,求w的值?...
题目
设函数f(x)=(sinwx+coswx)²+2cos²wx(w>0)的最小正周期为2π/3,求w的值?

提问时间:2020-11-11

答案
f(x)=(sinwx+coswx)^2+2(coswx)^2
=1+2sinwxcoswx+2(coswx)^2
=sin2wx+cos2wx+2
=√2sin(2wx+π/4)+2
最小正周期为T=2π/2w=2π/3,则w=3/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.