当前位置: > 设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有(  ) A.f(x)g(x)>f(b)g(b) B.f(x)g(a)>f(a...
题目
设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有(  )
A. f(x)g(x)>f(b)g(b)
B. f(x)g(a)>f(a)g(x)
C. f(x)g(b)>f(b)g(x)
D. f(x)g(x)>f(a)g(a)

提问时间:2020-11-11

答案
∵f′(x)g(x)-f(x)g′(x)>0
(
f(x)
g(x)
)′>0

∴函数
f(x)
g(x)
在R上为单调增函数
∵a<x<b
f(a)
g(a)
f(x)
g(x)
f(b)
g(b)

∵f(x),g(x)是定义在R上的恒大于零的可导函数
∴f(x)g(a)>f(a)g(x)
故选B
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.