题目
已知椭圆中心在原点,焦点在x轴上,直线x+y=1被椭圆截得的弦AB的长为2根号2,且AB的中点与原点连线的斜率为(根号2)/2,求椭圆方程
提问时间:2020-11-11
答案
椭圆ax²+by²=1与直线X+Y-1=0相交于AB两点,C是AB中点,若|AB|=2√2,0为原点,OC斜率为√2/2 ,求a,b.
【解】设A(x1,y1),B(x2,y2),C(x0,y0)
联立:ax²+by²=1与x+y-1=0得
(a+b)x²-2bx+b-1=0
由韦达定理得:x1+x2=2b/(a+b),x1•x2=(b-1)/(a+b).
|AB|=√2•√[2b/(a+b)]²-[4(b-1)/(a+b)]=2√2
整理得:a²+b²+3ab-a-b=0……①
又x0=(x1+x2)/2,即x0=b/(a+b)
y0=(y1+y2)/2=(-x1+1-x2+1)/2 即y0=a/(a+b)
OC斜率为√2/2 ,则y0/x0=a/b=√2/2…… ②
联立①②解得:a=1/3,b=√2/3.
椭圆方程:x^2/3+y^2/(9/2)=1
【解】设A(x1,y1),B(x2,y2),C(x0,y0)
联立:ax²+by²=1与x+y-1=0得
(a+b)x²-2bx+b-1=0
由韦达定理得:x1+x2=2b/(a+b),x1•x2=(b-1)/(a+b).
|AB|=√2•√[2b/(a+b)]²-[4(b-1)/(a+b)]=2√2
整理得:a²+b²+3ab-a-b=0……①
又x0=(x1+x2)/2,即x0=b/(a+b)
y0=(y1+y2)/2=(-x1+1-x2+1)/2 即y0=a/(a+b)
OC斜率为√2/2 ,则y0/x0=a/b=√2/2…… ②
联立①②解得:a=1/3,b=√2/3.
椭圆方程:x^2/3+y^2/(9/2)=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1在催化剂二氧化锰的作用下,加热氯酸钾制氧气
- 2一块冰里有一小石子浮在水面上,等溶化后水面将?
- 3What do you do if you have the flu?这句话用英语回答
- 4已知圆锥的底面半径为1,轴截面是等腰直角三角形,那么圆锥的表面积为
- 5据了解,个体服装店在销售衣服时,只要销售价高出进价的20%便但老板们常以高出进价的50%~100%标价可盈利
- 6沙漠中有一个土丘,当水平方向的风不断吹过沙丘时,沙丘会慢慢(风是水平向右吹
- 7∫4*tan(5x)^3 dx 范围[上pi/20,下0]
- 8You make my heart slime 求翻译
- 9若点(a.b)是直线x+2y+1=0上的一个动点,则ab的最大值是多少?
- 10西亚史诗《吉尔伽美什》与古希腊史诗《荷马史诗》有什么共同点?