当前位置: > 已知函数f(x)=sin(2ωx-π/6)+1/2(ω>0)的最小正周期为π...
题目
已知函数f(x)=sin(2ωx-π/6)+1/2(ω>0)的最小正周期为π
1,求ω的值【是1吗?,我算出来是1】
2,求f(x)在[0,2π/3]的取值范围

提问时间:2020-11-11

答案
1.最小正周期T=2π/2ω=π,所以ω=1
2.此时f(x)=sin(2x-π/6)+1/2,x在区间[0,2π/3]上时,2x-π/6的范围是[-π/6,7π/6],作sinx图观察在此范围内的函数值是由[-1/2,1],所以sin(2x-π/6)的取值范围是[-1/2,1],而原函数f(x)=sin(2x-π/6)+1/2的取值范围就是[0,3/2].
请自己计算对比.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.