当前位置: > p(x,y)是曲线x=2+cosa,y=sina(a为参数)上任意一点,则(x-5)^2+(y+4)^2的最大值为...
题目
p(x,y)是曲线x=2+cosa,y=sina(a为参数)上任意一点,则(x-5)^2+(y+4)^2的最大值为

提问时间:2020-11-11

答案
x=2+cosa,y=sina
那么x-2=cosa,y=sina
于是(x-2)²+y²=cos²a+sin²a=1
即点P的轨迹方程是:(x-2)²+y²=1,圆心O(2,0),半径R=1
而代数式(x-5)²+(y+4)²表示动点P到圆外的定点C(5,-4)的距离的平方
显然这个距离的最大值为:|OC|+R=√[(2-5)²+(0+4)²]+1=5+1=6
所以(x-5)²+(y+4)²的最大值就是6²=36
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.