当前位置: > 在 (x+1)^3+(x+1)^4+(x+1)^5+…+(x+1)^20展开式中含x^3项的系数! 急!...
题目
在 (x+1)^3+(x+1)^4+(x+1)^5+…+(x+1)^20展开式中含x^3项的系数! 急!

提问时间:2020-11-11

答案
你好!
一:可以看成公比为(x+1)的等比数列.
Sn=(x+1)^3*[1-(x+1)^18]/[1-(x+1)]
=-(x+1)^3/x+(x+1)^21/x
-(x+1)^3/x含x^3的项为0
(x+1)^21含x^4项的系数C21,17*x^4*1为5985x^4
所以系数为5985
二:因为是x^3的系数,所以次数必然>=3
系数之和=C3,3+C4,1+C5,2+.+C20,17
=C4,0+C4,1+C5,2+.+C20,17
= C21,17
=5985
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.