当前位置: > f(x)=∫(sinx,0)sin(t^2)dt与g(x)=x^3+x^4,则当x趋近于0时,f(x)是g(x)的.答案是同阶非等价无穷小...
题目
f(x)=∫(sinx,0)sin(t^2)dt与g(x)=x^3+x^4,则当x趋近于0时,f(x)是g(x)的.答案是同阶非等价无穷小
主要是解决下f(x)的问题~

提问时间:2020-11-11

答案
用洛必达
lim f/g = lim sin(sin²x)* cosx / (3x^2+4x^3)用等价无穷小,并注意 cosx->1
= lim sin²x / (3x^2+4x^3)
=lim x^2 / (3x^2+4x^3) 分子分母同除以 x^2
=lim 1 /(3 +4x)
= 1/ 3
故 f与g 是同阶非等价无穷小(如果极限为1就是等价无穷小了).
补充:f(x)的求导是复合函数求导,利用积分上限函数导数公式.
f(x)是由 g(u) = ∫(u,0)sin(t^2)dt和 u=sinx复合而成的
f '(x)=g'(u)*u'(x)= sin(u^2)*cosx =sin[(sinx)^2]*cosx
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.