题目
已知函数f(x)=
|x| |
x+2 |
提问时间:2020-11-11
答案
(1)函数f (x)在区间(0,+∞)上,证明如下:
∵f(x)=
,
∴当x>0时,f(x)=1−
∵y=
在(0,+∞)上是减函数
∴f (x)在区间(0,+∞)上是增函数.(4分)
(2)原方程即:
=kx2①
①由方程的形式可以看出,x=0恒为方程①的一个解.(5分)
②当x<0且x≠-2时方程①有解,则
=kx2即kx2+2kx+1=0
当k=0时,方程kx2+2kx+1=0无解;
当k≠0时,△=4k2-4k≥0即k<0或k≥1时,方程kx2+2kx+1=0有解.
设方程kx2+2kx+1=0的两个根分别是x1,x2则x1+x2=-2,x1x2=
.
当k>1时,方程kx2+2kx+1=0有两个不等的负根;
当k=1时,方程kx2+2kx+1=0有两个相等的负根;
当k<0时,方程kx2+2kx+1=0有一个负根(8分)
③当x>0时,方程①有解,则
=kx2,kx2+2kx-1=0
当k=0时,方程kx2+2kx-1=0无解;
当k≠0时,△=4k2+4k≥0即k>0或k≤-1时,方程kx2+2kx-1=0有解.
设方程kx2+2kx-1=0的两个根分别是x3,x4
∴x3+x4=-2,x3x4=-
∴当k>0时,方程kx2+2kx-1=0有一个正根,
当k≤-1时,方程kx2+2kx+1=0没有正根.(11分).
综上可得,当k∈(1,+∞)时,方程f (x)=kx2有四个不同的实数解.(13分).
∵f(x)=
|x| |
x+2 |
∴当x>0时,f(x)=1−
2 |
x+2 |
∵y=
2 |
x+2 |
∴f (x)在区间(0,+∞)上是增函数.(4分)
(2)原方程即:
|x| |
x+2 |
①由方程的形式可以看出,x=0恒为方程①的一个解.(5分)
②当x<0且x≠-2时方程①有解,则
−x |
x+2 |
当k=0时,方程kx2+2kx+1=0无解;
当k≠0时,△=4k2-4k≥0即k<0或k≥1时,方程kx2+2kx+1=0有解.
设方程kx2+2kx+1=0的两个根分别是x1,x2则x1+x2=-2,x1x2=
1 |
k |
当k>1时,方程kx2+2kx+1=0有两个不等的负根;
当k=1时,方程kx2+2kx+1=0有两个相等的负根;
当k<0时,方程kx2+2kx+1=0有一个负根(8分)
③当x>0时,方程①有解,则
x |
x+2 |
当k=0时,方程kx2+2kx-1=0无解;
当k≠0时,△=4k2+4k≥0即k>0或k≤-1时,方程kx2+2kx-1=0有解.
设方程kx2+2kx-1=0的两个根分别是x3,x4
∴x3+x4=-2,x3x4=-
1 |
k |
∴当k>0时,方程kx2+2kx-1=0有一个正根,
当k≤-1时,方程kx2+2kx+1=0没有正根.(11分).
综上可得,当k∈(1,+∞)时,方程f (x)=kx2有四个不同的实数解.(13分).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1我昨天在图书馆看书 翻译成英语
- 21-氯丙烷的制备
- 3灯泡最容易烧坏的时候是开灯的一瞬间,问题如下.
- 4中药中的化学成分能由微生物制的吗
- 5I would love _______to the part last night but I had to work extra hours to finish a report .
- 6已知an=(2n+10)+2^2n求数列{an}前n项和sn
- 7若有两个一次函数y=k1x+b1(k1≠0),y=k2x+b2(k2≠0),则称函数y=(k1+k2)x+b1·b2为这两个函数的组合函数,
- 8汽车发动机应用循环流动水进行冷却,你能说说它的工作原理吗?
- 9在下列括号里添上合适的数字,将成语补充完整:
- 10分式的分母有理化;1+a分之1-a