当前位置: > ∫ √[x/(x+1)]dx 上限3 下限0 用换元积分法...
题目
∫ √[x/(x+1)]dx 上限3 下限0 用换元积分法

提问时间:2020-11-11

答案
令t=√x,则x=t²
则原式=∫ √t²/(t²+1)dt²=2∫t²dt/√(t²+1)=t√(t²+1)-ln[t+√(t²+1)],上限为√3,下限为0
∴原式=√3·√(3+1)-ln[√3+√(3+1)]-0+0=2√3-ln(2+√3)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.