题目
如图,D是△ABC内一点,E是△ABC外一点,∠EBC=∠DBA,∠ECB=∠DAB,求证:∠BDE=∠BAC.
提问时间:2020-11-10
答案
证明:∵∠EBC=∠DBA,∠ECB=∠DAB,
∴△BEC∽△BDA,
∴
=
,
即
=
,
∵∠EBC+∠CBD=∠DBA+∠CBD,
∴∠EBD=∠CBA,
∴△BDE∽△BAC,
∴∠BDE=∠BAC.
∴△BEC∽△BDA,
∴
BC |
BA |
BE |
BD |
即
BE |
BC |
BD |
BA |
∵∠EBC+∠CBD=∠DBA+∠CBD,
∴∠EBD=∠CBA,
∴△BDE∽△BAC,
∴∠BDE=∠BAC.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点