当前位置: > 在圆O中,两条弦AB,CD,且角AOC=30°,角BOD=70°,且AB,CD交点为E,则角AEC=?,...
题目
在圆O中,两条弦AB,CD,且角AOC=30°,角BOD=70°,且AB,CD交点为E,则角AEC=?,
双解题,要图和解题过程,快

提问时间:2020-11-10

答案
首先,证明一个定理:
“顶点在圆内的角(两边与圆相交)的度数等于其所截两弧度数和的一半”
证明:
过C作CP//AB,交圆于P,
则有∠AEC=∠C,弧AC=弧BP(圆中两平行弦所夹弧相等)
而∠C的度数等于弧DP的一半,弧DP=弧BD+弧BP=弧BD+弧AC
所以∠AEC的度数等于“弧BD+弧AC”的一半
即“顶点在圆内的角(两边与圆相交)的度数等于其所截两弧度数和的一半”
∴∠AEC = 1/2(弧AC+弧BD) = 1/2(∠AOC+∠BOD) = 1/2(30°+70°) = 50°
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.