当前位置: > 如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB. (1)求证:AC平分∠DAB; (2)若AC=8,AD:BC=5:3,试求⊙O的半径....
题目
如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.

(1)求证:AC平分∠DAB;
(2)若AC=8,AD:BC=5:3,试求⊙O的半径.

提问时间:2020-11-10

答案
(1)证明:∵OC∥AB
∴∠OCA=∠BAC
∵OA=OC
∴∠OAC=∠OCA
∴∠OAC=∠BAC
即AC平分∠DAB;
(2)∵AC平分∠DAB,
∴弧CD=弧BC
∴CD=BC
又AD:BC=5:3
∴AD:CD=5:3
∵AD是圆的直径,∴∠ACD=90°
根据勾股定理,得AD:CD:AC=5:3:4
所以AD=10,即圆的半径是5.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.