当前位置: > 将1994拆分成若干个连续自然数的和,共有几种拆法?...
题目
将1994拆分成若干个连续自然数的和,共有几种拆法?

提问时间:2020-11-10

答案
设拆成的数起始于X,共N个,则尾项是X+N-1,有
(X+X+N-1)*N/ 2 = 1994
(2X-1 + N)*N = 3988
显然X≥1,2X-1≥1.则 (2X-1 + N)>N
且2X-1必是奇数,(2X-1 + N)与N必不同奇偶.
因此将3988分解成两个奇偶性不同的数(大于1),共有多少种分解法,就有多少种连续自然数拆法.
3988=2^2×997
只能分成997×4 一种有效方法.此时
N = 4
2X-1+N=997,解得X = 497
1994 = 497+498+499+500
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.