题目
怎样证明正态分布的概率密度函数与x轴所围成的面积为1?
提问时间:2020-11-10
答案
设X服从标准正态分布,概率密度为f(x)=1/(√2π)*e^(-x^2/2),x取任意实数
则∫f(x)dx,(积分下上限是负无穷和正无穷),就是概率密度函数图像与x轴所围成的面积
根据概率密度的性质可得∫f(x)dx=1,(积分下上限是负无穷和正无穷)
∫f(x)dx=∫1/(√2π)*e^(-x^2/2)dx (积分下上限是负无穷和正无穷)
直接积分不好积
假设Y也服从标准正态分布,且X,Y相互独立,则有
∫f(x)dx*∫f(y)dy=∫∫f(x)f(y)dxdy,积分下上限是负无穷和正无穷
用x=√2u,y=√2v,代入上式可得
∫∫f(x)f(y)dxdy=∫∫1/π*e^(-u^2-v^2)dudv=1/π*∫dθ∫re^(-r^2)dr,前面的积分下上限是0和2π,后面的是0和正无穷
∫∫f(x)f(y)dxdy=∫∫1/π*e^(-u^2-v^2)dudv=1/π*∫dθ∫re^(-r^2)dr=1/π*π=1
因为∫f(x)dx=∫f(y)dy
所以可得∫f(x)dx=∫f(y)dy=1
所以
正态分布的概率密度函数与x轴所围成的面积为1
解毕
则∫f(x)dx,(积分下上限是负无穷和正无穷),就是概率密度函数图像与x轴所围成的面积
根据概率密度的性质可得∫f(x)dx=1,(积分下上限是负无穷和正无穷)
∫f(x)dx=∫1/(√2π)*e^(-x^2/2)dx (积分下上限是负无穷和正无穷)
直接积分不好积
假设Y也服从标准正态分布,且X,Y相互独立,则有
∫f(x)dx*∫f(y)dy=∫∫f(x)f(y)dxdy,积分下上限是负无穷和正无穷
用x=√2u,y=√2v,代入上式可得
∫∫f(x)f(y)dxdy=∫∫1/π*e^(-u^2-v^2)dudv=1/π*∫dθ∫re^(-r^2)dr,前面的积分下上限是0和2π,后面的是0和正无穷
∫∫f(x)f(y)dxdy=∫∫1/π*e^(-u^2-v^2)dudv=1/π*∫dθ∫re^(-r^2)dr=1/π*π=1
因为∫f(x)dx=∫f(y)dy
所以可得∫f(x)dx=∫f(y)dy=1
所以
正态分布的概率密度函数与x轴所围成的面积为1
解毕
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1找课件:北师大版四年级数学上册(表格式)教案
- 2在下列各杂交组合中,后代和亲代表现型相同的一组是( ) A.AaBB×AABb B.AAbb×aaBb C.Aabb×aaBb D.AABb×AaBb
- 3在锐角A内部,画1条射线,得3个锐角,画2条不同射线,得6个锐角,照此规律,N条射线可得多少个锐角?
- 4“天狗吃日”的科学解释是什么?
- 5将pH=3 的 HAc(Ka = 1.8×10-5 )和等体积等浓度的 NaOH 溶液混合后,溶液的 pH 约为?
- 6如何快速推断出数字推理之间的关系
- 7We found that she was very friendly.(同义句)We____ ____ very friendly.
- 8请问最简易的电磁波干扰器怎样制作?
- 9分子的空间构型(立体结构)是什么意思……太抽象了
- 10补充习题里的填空的本意和文中的意思
热门考点