当前位置: > 设f(1)=2,f(n)>0(n属于正整数)有f(n1+n2)=f(n1)f(n2),试猜想出f(n)的表达式,并证明你的猜想...
题目
设f(1)=2,f(n)>0(n属于正整数)有f(n1+n2)=f(n1)f(n2),试猜想出f(n)的表达式,并证明你的猜想

提问时间:2020-11-10

答案
猜想:f(n)=2^n
用Cauchy法证明:
首先对于正整数n有f(n)=f(1)^n=2^n
f(0)=f(0)^2,则f(0)=0或1
若f(0)=0则f(n)=f(n+0)=f(n)f(0)=0与f(n)>0矛盾.因此有f(0)=1
f(1-1)=f(1)f(-1)=2f(-1)=1,所以f(-1)=1/2
f(-n)=f(-1)^n=2^(-n)
因此f(n)=2^n对所有整数都成立
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.