当前位置: > 微分 导数...
题目
微分 导数
an=∫[0,π/2]x(sinnx)^4/(sinx)^4*dx
求n→∞,lim an/n^2

提问时间:2020-11-10

答案
应用两次施笃兹定理
lim an/n^2变为
(0,+∞)∫xsin[(3n-3)x]sin[(n-1)x]/(sinx)^2dx+(0,+∞)∫xcos[(4n-4)x]dx
=(0,+∞)∫xsin[(3n-3)x]sin[(n-1)x]/(sinx)^2dx
=(0,+∞)∫x{cos[(2n-2)x]-cos[4(n-1)x]}/(sinx)^2dx
(sinx)^2=-(cotx)'
洛朗级数展开得
(sinx)^2=1/x^2+1/3+x^/15+2x^4/189+o(x^4),高阶项的积分为0
同时(0,+∞)∫{cos[(2n-2)x]-cos[4(n-1)x]}x^2m=0
所以
=(0,+∞)∫x{cos[(2n-2)x]-cos[4(n-1)x]}/(sinx)^2dx
=(0,+∞)∫{cos[(2n-2)x]-cos[4(n-1)x]}/xdx
用收敛因子法解出
收敛因子e^(-tx)
(0,+∞)∫{cos[(2n-2)x]-cos[4(n-1)x]}/xdx=ln2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.