当前位置: > 已知x>0,y>0,z>0,证明x^3/(x+y)+y^3/(y+z)+z^3/(z+x)≥(xy+xz+yz)/2...
题目
已知x>0,y>0,z>0,证明x^3/(x+y)+y^3/(y+z)+z^3/(z+x)≥(xy+xz+yz)/2

提问时间:2020-11-10

答案
如果可以用排序不等式证明的话x^2+y^2+z^2>=x^1.5y^0.5+y^1.5z^0.5+z^1.5x^0.5=2xxy/2(xy)^0.5+2yyz/2(yz)^0.5+2zzx/2(zx)^0.5=xy+yz+zx (2)(1)(2)相加,将(1)的右边移到左边,然后两边同时除以2即得到结论...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.