当前位置: > 单调减函数y=f(x),x趋向正无穷时极限为a,怎样证明f(x)>a?...
题目
单调减函数y=f(x),x趋向正无穷时极限为a,怎样证明f(x)>a?
这个结论应该对的吧,不对的话又是为什么
极限的局部保号性好像对于=0不适用的,没有等号的时候才适用
分不能浪费,就送给字数多的吧

提问时间:2020-11-10

答案
我想这样应该是能说的过去的:
设g(x)=f(x)-a,
s.t. lim g(x)=lim f(x)-a=0;
由于极限的局部保号性
存在x0,使得对于任意的x>x0时,g(x)>0;
由于g'(x)=f'(x)0
f(x)>a
呃,好像是不对的,要不试试反证?
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.