当前位置: > 证明任意一个秩为r的的矩阵A可以表示为r个秩为1的矩阵之和,而不能表示为r-1个秩为1的矩阵之和....
题目
证明任意一个秩为r的的矩阵A可以表示为r个秩为1的矩阵之和,而不能表示为r-1个秩为1的矩阵之和.
刘老师您好,这个证明题,我的思路是这样的,因为A可以通过初等变换变为最简形式,而最简形的矩阵便可以表示为r个秩为1的矩阵之和,不能表示为r-1个秩为1的矩阵之和.可是这如何写呢?

提问时间:2020-11-10

答案
我来替刘老师回答吧对于 A = PDQ^T, 其中 D = diag{d_1, d_2, ..., d_n}把 P 和 Q 按列分块成 P = [p_1, p_2, ..., p_n], Q = [q_1, q_2, ..., q_n],那么用分块矩阵乘法即知 A = p_1d_1q_1^T + ... + p_nd_nq_n^T这...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.