题目
如图,在平面直角坐标系中,等腰直角三角形ABC两个顶点坐标分别为A(0,2)C(-1,0)
将△ABC绕D顺时针旋转角度a,直接写出A在此过程中经过的整数点的坐标
将△ABC绕D顺时针旋转角度a,直接写出A在此过程中经过的整数点的坐标
提问时间:2020-11-10
答案
(1)连接MD,则角MDA=60度,当AB绕点D 顺时针旋转使得到的直线l 与圆 M 相切时,DM⊥AB,角MDA=90度,所以,此时的旋转角是-30度(或顺时针30度).
未旋转时,点D坐标(3/2,√3/2)
旋转后,直线l斜率k=√3/3,过点D,所以l 的解析式为:
y= x√3/3
(2)MN⊥CD,且与CD互相垂直平分.因为点N是BC的中点,MN是中位线
CD⊥AB,MN‖AB
∴MN⊥CD,同时MN平分CD
同时利用MN连线与CD的交点及点C组成的两个三角形全等,得出CD也平分了MN.
(3)第1种情况:PA⊥AN,P(3/4,√3/4)
第2种情况:PN⊥AN,P(9/4,3√3/4)
第3种情况:PA⊥PN,以AN为直径的圆与直线l的交点有2个
AN=√3
设直线l上的点P坐标为(x,x√3/3 ),则
PA^2+PN^2=AN^2=3
N点坐标为(5/2,√3/2)
(x-1)^2+(x√3/3)^2+(x-5/2)^2+(x√3/3-√3/2)^2=3
x^2-2x+1+x^2/3+x^2-5x+25/4+x^2/3-x+3/4=3
8x^2/3-8x+5=0
8x^2-24x+15=0
x=(6±√6)/4这是P点的横坐标,P点纵坐标是x√3/3
未旋转时,点D坐标(3/2,√3/2)
旋转后,直线l斜率k=√3/3,过点D,所以l 的解析式为:
y= x√3/3
(2)MN⊥CD,且与CD互相垂直平分.因为点N是BC的中点,MN是中位线
CD⊥AB,MN‖AB
∴MN⊥CD,同时MN平分CD
同时利用MN连线与CD的交点及点C组成的两个三角形全等,得出CD也平分了MN.
(3)第1种情况:PA⊥AN,P(3/4,√3/4)
第2种情况:PN⊥AN,P(9/4,3√3/4)
第3种情况:PA⊥PN,以AN为直径的圆与直线l的交点有2个
AN=√3
设直线l上的点P坐标为(x,x√3/3 ),则
PA^2+PN^2=AN^2=3
N点坐标为(5/2,√3/2)
(x-1)^2+(x√3/3)^2+(x-5/2)^2+(x√3/3-√3/2)^2=3
x^2-2x+1+x^2/3+x^2-5x+25/4+x^2/3-x+3/4=3
8x^2/3-8x+5=0
8x^2-24x+15=0
x=(6±√6)/4这是P点的横坐标,P点纵坐标是x√3/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1My dream is to be a s_ like Edison
- 2公园那面要修一道长15M厚24cm高3m的围墙每立方米用转525一共用多少块转带公式的哈
- 3已知三角形ABC的三遍唱分别为a、b、c,周长为28cm,a=2b,a+3b =3c,则a=___cm,b=____cm,c=____cm.
- 4英语翻译
- 5果园有桃树100棵,比苹果树多1/4,苹果树是x,列出方程,并求出苹果树.
- 6i had a Sunday times on wonderful night连词成句!
- 7be on the clock
- 8放在30%蔗糖溶液中会发生质壁分离的细胞是A人的口腔上皮细胞 B洋葱根尖生长点细胞 C洋葱表皮细胞
- 9河流上游下游哪个脏
- 10前出师表需要背诵吗
热门考点