题目
某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元,该商场为促销,制定了两种优惠办法:甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额九折付款.
某校欲为校书法小组购买这种毛笔10支,书法练习本x本(x≥10).
①写出每种优惠办法实际付款金额y1(元),y2(元)与x的函数关系式;
②比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱;
③如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种毛笔10支和书法练习本60本设计一种最省钱的购买方案.
某校欲为校书法小组购买这种毛笔10支,书法练习本x本(x≥10).
①写出每种优惠办法实际付款金额y1(元),y2(元)与x的函数关系式;
②比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱;
③如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种毛笔10支和书法练习本60本设计一种最省钱的购买方案.
提问时间:2020-11-10
答案
(1)y1=25×10+(x-10)×5=5x+200;
y2=(25×10+5x)×0.9=4.5x+225.
(2)①y1>y2时,
即5x+200>4.5x+225,
解得:x>50;
②y1=y2时,
即5x+200=4.5x+225,
解得:x=50;
③y1<y2时,
即5x+200<4.5x+225,
解得x<50.
(3)甲方案:25×10+50×5=500元;
乙方案:(25×10+60×5)×0.9=495元;
两种方案买:25×10+50×5×0.9=475元,
所以用甲方案买10支毛笔,剩下用乙方案购买.
y2=(25×10+5x)×0.9=4.5x+225.
(2)①y1>y2时,
即5x+200>4.5x+225,
解得:x>50;
②y1=y2时,
即5x+200=4.5x+225,
解得:x=50;
③y1<y2时,
即5x+200<4.5x+225,
解得x<50.
(3)甲方案:25×10+50×5=500元;
乙方案:(25×10+60×5)×0.9=495元;
两种方案买:25×10+50×5×0.9=475元,
所以用甲方案买10支毛笔,剩下用乙方案购买.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1x/(2x-4) - 1/4x²=1/2,这个方程怎么解?
- 2浑身解数的解的意思
- 3mathematica中mod[a,
- 4Where are you going to go this summer?怎么回答 What are you going to do?怎么回答 (两种不同的回答)
- 5一张卡片后面的数字分别与它本身相加、相减,相乘,相除,所得的结果再相加,得2025,卡片后的数字是几?
- 6判断:函数在R上连续,且有零点,一定可用二分法求零点的近似值或精确值
- 7英语翻译
- 8写事作文600字
- 9已知集合A={1,2,3},集合B={4,5,6},映射f:A到B,且满足1的象是4,则这样的映射有________
- 10星星像什么一样挂在天上,急.