题目
函数f(x)=-x2+4x-1在[t,t+1]上的最大值为g(t),则g(t)的最大值为______.
提问时间:2020-11-09
答案
因为f(x)=-x2+4x-1开口向下,对称轴为x=2,所以须分以下三种情况讨论
①轴在区间右边,t+1≤2⇒t≤1,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(t+1)=-t2+4t-1.
故g(t)=-t2+4t-1.
②轴在区间中间,t<2<t+1⇒1<t<2,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(2)=-22+4×2-1=3.
故g(t)=3.
③轴在区间左边,t≥2,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(t)=-t2+2t+2.
故g(t)=-t2+2t+2.
∴g(t)=
,
∴g(t)的最大值为3
故答案为;3
①轴在区间右边,t+1≤2⇒t≤1,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(t+1)=-t2+4t-1.
故g(t)=-t2+4t-1.
②轴在区间中间,t<2<t+1⇒1<t<2,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(2)=-22+4×2-1=3.
故g(t)=3.
③轴在区间左边,t≥2,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(t)=-t2+2t+2.
故g(t)=-t2+2t+2.
∴g(t)=
|
∴g(t)的最大值为3
故答案为;3
因为对称轴固定,区间不固定,须分轴在区间左边,轴在区间右边,轴在区间中间三种情况讨论,找出g(t)的表达式,再求其最大值.
二次函数的性质.
本题的实质是求二次函数的最值问题,关于给定解析式的二次函数在不固定闭区间上的最值问题,一般是根据对称轴和闭区间的位置关系来进行分类讨论,如轴在区间左边,轴在区间右边,轴在区间中间,最后在综合归纳得出所需结论
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1已知A=3x²-5x,B=4x²-7x+11,试比较A,B的大小
- 2C语言在一个函数里面定义了一个结构体,怎么在另外一个函数里面使用?
- 3学习《出师表》一课后,九年级四班组织了一场"千秋诸葛我评说"的小型演讲比.同学们纷纷
- 4玩具厂想用5小时到300千米外城市运货,开始3小时每小时行50千米,要在规定内到目的,以后每小时要行多少千米?
- 5so as to 有这个词组吗?
- 6科学家怎么知道原始大气的成分
- 7比负2又三分之一大并且比3又二分之一小的整数
- 8City Index Limited是什么意思
- 9某公司生产的新产品的成本是2元/件,售价是3元/件,年销售量为10万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(万元)时,产品的销售量
- 10若将直线y=2x-1向上平移3个单位,则所得直线的表达式为_.
热门考点