当前位置: > 设A、B是双曲线x^2+y^2/2=1上的点,且AB方程为y=x+1,如果线段AB的垂直平分线与双曲线交于CD两点,那么ABCD是否共圆,为什么...
题目
设A、B是双曲线x^2+y^2/2=1上的点,且AB方程为y=x+1,如果线段AB的垂直平分线与双曲线交于CD两点,那么ABCD是否共圆,为什么

提问时间:2020-11-09

答案
将AB方程带入双曲线方程解得A(-1,0),B(3,4).AB中点M坐标为(1,2),AB垂直平分线CD方程为y=-(x-1)+2=-x+3.带入双曲线方程解得C(-3+2√5,6-2√5),D(-3-2√5,6+2√5).CD中点N坐标为(-3,6),有两点间距离公式算出|NA|=2√10,|NB|=2√10,|NC|=|ND|=2√10.四者相等,所以四点共圆.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.