题目
如图,在△ABC中,∠A,∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.
(1)点D是△ABC的______心;
(2)求证:四边形DECF为菱形.
(1)点D是△ABC的______心;
(2)求证:四边形DECF为菱形.
提问时间:2020-11-09
答案
(1)点D是△ABC的内心.(2分)
(2)证法一:连接CD,(3分)
∵DE∥AC,DF∥BC,
∴四边形DECF为平行四边形,(4分)
又∵点D是△ABC的内心,
∴CD平分∠ACB,即∠FCD=∠ECD,(5分)
又∠FDC=∠ECD,
∴∠FCD=∠FDC
∴FC=FD,(6分)
∴▱DECF为菱形.(7分)
证法二:
过D分别作DG⊥AB于G,DH⊥BC于H,DI⊥AC于I.(3分)
∵AD,BD分别平分∠CAB,∠ABC,
∴DI=DG,DG=DH.
∴DH=DI.(4分)
∵DE∥AC,DF∥BC,
∴四边形DECF为平行四边形,(5分)
∴S□DECF=CE•DH=CF•DI,
∴CE=CF.(6分)
∴▱DECF为菱形.(7分)
(2)证法一:连接CD,(3分)
∵DE∥AC,DF∥BC,
∴四边形DECF为平行四边形,(4分)
又∵点D是△ABC的内心,
∴CD平分∠ACB,即∠FCD=∠ECD,(5分)
又∠FDC=∠ECD,
∴∠FCD=∠FDC
∴FC=FD,(6分)
∴▱DECF为菱形.(7分)
证法二:
过D分别作DG⊥AB于G,DH⊥BC于H,DI⊥AC于I.(3分)
∵AD,BD分别平分∠CAB,∠ABC,
∴DI=DG,DG=DH.
∴DH=DI.(4分)
∵DE∥AC,DF∥BC,
∴四边形DECF为平行四边形,(5分)
∴S□DECF=CE•DH=CF•DI,
∴CE=CF.(6分)
∴▱DECF为菱形.(7分)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1呼吸作用产生了什么?
- 2大家帮我看句英文翻译
- 3810/54 用简便算法
- 4With a good ____ of several foreign languages,she has got a high position.
- 5英语感叹句.what exciting news和how exciting news哪句错.怎么判断啊
- 6六分之五比二分之一最简单的整数比是多少?比值是多少?
- 71/2*5+1/5*8+1/8*11+...+1/41*44=?
- 8Will you wait a moment?改为祈使句是什么?
- 9在一幅地图上 用3厘米的线段表示实际距离的900千米,一条长480千米的高速公路,这幅地图上是多少厘米
- 10祖冲之有那些贡献