当前位置: > 已知a、b、c是△ABC的三边,并设二次函数y=(a+b)x²+2cx+(a-b),当x=-½时,有最小值-b/2....
题目
已知a、b、c是△ABC的三边,并设二次函数y=(a+b)x²+2cx+(a-b),当x=-½时,有最小值-b/2.
求证三角形ABC为等边三角形

提问时间:2020-11-09

答案
将x=-½时带入函数方程有:
(a+b)/4-c+a-b=-b/2,即5a-b-4c=0.(1)
因为二次函数y=(a+b)x²+2cx+(a-b)中,二次项(a+b)>0,则函数开口朝上
则函数的对称轴与函数的交点为最小值,即当x=-2c/2(a+b)=-½,即a+b=2c.(2)
联解(1)和(2)得出a=b
此时函数值为:(4(a+b)(a-b)-(2c)²)/4(a+b)=-b/2,并把a=b带入
即a=c
即a=b=c,三角形为等边三角形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.