当前位置: > 抽象代数证明或反驳:A、B是群G的子群,则A∩B也是G的子群.如下这么证明有没有问题?...
题目
抽象代数证明或反驳:A、B是群G的子群,则A∩B也是G的子群.如下这么证明有没有问题?
证明:设x∈A∩B => x∈A 且x∈B
x∈A => x^(-1)∈A
同理x^(-1)∈B
=> x^(-1) ∈A∩B
e是A、B的单位元
e∈A∩B
ex=x (x为A∩B的任意元素)
结合律显然成立.
所以A∩B也是G的子群.

提问时间:2020-11-09

答案
基本正确:缺运算及其封闭性证明:设运算为+:设x1,x2∈A∩B,则x1,x2∈A,& x1,x2∈B
又A,B是群,所以x1+x2∈A,& x1+x2∈B,所以x1+x2∈A∩B
此外,应该证明G的单位元e就是子群的单位元
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.