当前位置: > 数学双曲线题...
题目
数学双曲线题
设F1和F2是双曲线=4的两个焦点,点Q是双曲线上的任意一点,从F1引∠F1PF2平分线的垂线,垂足为P,则求P点的轨迹方程?
帮忙解一下,要详细步骤
谢谢!

提问时间:2020-11-09

答案
这种题解起来非常麻烦
现给一个解题思路
设Q(x,y)是双曲线上的任意一点
1) 据双曲线方程x^2-y^2=4,求出焦点坐标
2)据求出的焦点坐标和Q(x,y)求出QF1、QF2直线方程
3)设QF2直线方程的斜率为k2
QF1直线方程的斜率为k1
k1、k2是可以求出来的
4) 设QF2和QF1的夹角为θ,可有2种方法求出θ
tanθ=(k2-k1)/(1+k1*k2)
5) 求出tanθ/2=k,此即QP的斜率
QP的直线方程y=kx+b
6)F1P直线方程的斜率=-1/k
代入F1坐标可得PF1的直线方程
7)方程组5)、6),求出b
8) 求交点P,也就求出了P的轨迹
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.