当前位置: > 现在已知一个函数f(x)=lnx+x2-4x 求方程f(x)+x2=0在(1,+∞)上的根的个数...
题目
现在已知一个函数f(x)=lnx+x2-4x 求方程f(x)+x2=0在(1,+∞)上的根的个数
现在已知一个函数f(x)=lnx+x2-4x
求方程f(x)+x2=0在(1,+∞)上的根的个数

提问时间:2020-11-09

答案
令F(x)=lnx+x2-4x+x2,对它求导得:F‘(x)=1/x+4x-4,因为当x在(1,+∞)时,F’(x)>0,所以F(x)是单调递增的,又F(x)是连续函数,且F(1)=-20,所以存在唯一一点在(1,2)之间,使F(x)=0,即lnx+x2-4x+x2=0,即f(x)+x2=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.