当前位置: > 已知A,B都是锐角,A+B不等于90度,且(1+tanA)*(1+tanB)=2,求证A+B=45度...
题目
已知A,B都是锐角,A+B不等于90度,且(1+tanA)*(1+tanB)=2,求证A+B=45度

提问时间:2020-11-09

答案
1+tanb+tana+tana*tanb=2
tana+tanb=2-1-tana*tanb
tana+tanb=1-tana*tanb
根据公式tan(a+b)=(tana+tanb)/(1-tana*tanb)=1
所以tan(a+b)=1
因为a.b都是锐角,A+B不等于90度,所以a+b=45度
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.