当前位置: > 函数f(x)对任意的a,b属于R恒有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1,证明:1=1...
题目
函数f(x)对任意的a,b属于R恒有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1,证明:1=1

提问时间:2020-11-09

答案
令a=b=0,得
f(0)=f(0)+f(0) -1
所以 f(0)=1
再令a=x>0,b=-x,得
则f(0)=f(x)+f(-x) -1
即 f(x)+f(-x)=2
因为f(x)>1,所以 f(-x)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.