题目
已知函数f(x)是定义在R上的单调奇函数,且f(1)=-2,解不等式f(x)+f(2x-x^2-2)<0
提问时间:2020-11-09
答案
解 ∵ f(x)是定义在R上的奇函数
∴ f(-x)=-f(x)且 f(0)=0
已知 f(1)=-2
而 -2<0,f(0)=0
∴ f(1)<f(0)
又已知f(x)是定义在R上的单调函数
∴ f(x)是定义在R上的单调减函数
不等式f(x)+f(2x-x^2-2)<0同解于:
f(2x-x^2-2)<-f(x)
又f(x)是定义在R上的奇函数
∴ f(2x-x^2-2)<f(-x)
又f(x)是定义在R上的单调减函数
∴ 2x-x^2-2>-x
x^2-3x+2<0
解得:1<x<2
∴ 不等式f(x)+f(2x-x^2-2)<0的解集为:1<x<2
∴ f(-x)=-f(x)且 f(0)=0
已知 f(1)=-2
而 -2<0,f(0)=0
∴ f(1)<f(0)
又已知f(x)是定义在R上的单调函数
∴ f(x)是定义在R上的单调减函数
不等式f(x)+f(2x-x^2-2)<0同解于:
f(2x-x^2-2)<-f(x)
又f(x)是定义在R上的奇函数
∴ f(2x-x^2-2)<f(-x)
又f(x)是定义在R上的单调减函数
∴ 2x-x^2-2>-x
x^2-3x+2<0
解得:1<x<2
∴ 不等式f(x)+f(2x-x^2-2)<0的解集为:1<x<2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点