当前位置: > 求函数y=7-2sinx-cos^2x的最大值与最小值.(提示:|sinx|≤1)...
题目
求函数y=7-2sinx-cos^2x的最大值与最小值.(提示:|sinx|≤1)

提问时间:2020-11-09

答案
y=7-2sinx-cos^2x=7-2sinx-1+sin^2x
令sinx=t
原式=7-2t-1+t²=6-2t+t²=(t-1)²+5,因为:|t|≤1,-1≤t≤1
所以t-1∈[-2,0]
所以(t-1)²∈[0,4]
所以(t-1)²+5∈[5,9]
所以这个函数最大值是9,最小值是5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.