当前位置: > 当x趋近于0时,求(1+xsinx)^(1/2)比e^x-1的极限...
题目
当x趋近于0时,求(1+xsinx)^(1/2)比e^x-1的极限
e^x-1 是(e^x)-1

提问时间:2020-11-08

答案
(1+xsinx)^(1/2)/(e^x-1)

∵Lim(x→0)xsin[x]=0
∴Lim(x→0)(1+xsin[x])^(1/2)=1
∵Lim(x→0)(e^x)=1
∴Lim(x→0)(e^x-1)=0
所以:Lim(x→0)(1+xsinx)^(1/2)/(e^x-1)=∞
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.