当前位置: > 高数,用换元积分法求积分 ∫1/(e^x-e^-x)dx...
题目
高数,用换元积分法求积分 ∫1/(e^x-e^-x)dx

提问时间:2020-11-08

答案
∫1/(e^x-e^-x)dx= ∫e^x/(e^2x-1)dx令t=e^x x=lnt dx=1/tdt原式=∫[t/(t^2-1)]*(1/t)dt=∫[1/(t^2-1)]dt=(1/2)∫{[1/(t-1)]-[1/(t+1)]}dt=(1/2){∫[1/(t-1)]d(t-1)-∫[1/(t+1)]}d(t+1)}=(1/2){ln|t-1|-ln|t+1|}+c=l...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.