当前位置: > 数列an的前n项和为sn,且a1=2,nan+1=sn+n*(n+1),求数列an通项公式...
题目
数列an的前n项和为sn,且a1=2,nan+1=sn+n*(n+1),求数列an通项公式

提问时间:2020-11-08

答案
∵数列{a[n]}的前n项和为S[n],na[n+1]=S[n]+n(n+1)
∴nS[n+1]-nS[n]=S[n]+n(n+1)
nS[n+1]-(n+1)S[n]=n(n+1)
S[n+1]/(n+1)-S[n]/n=1
∵a[1]=2
∴S[1]=a[1]=2
∴{S[n]/n}是首项为S[1]/1=2,公差为1的等差数列
即:S[n]/n=2+(n-1)=n+1
∴S[n]=n(n+1)
∵S[n-1]=(n-1)n
∴将上面两式相减,得:
a[n]=2n
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.