当前位置: > 定义在R上的奇函数f(x)满足对任意的x都有f(x-1)=f(4-x)且f(x)=x,x∈(0,32),则f(2012)-f(2010)等于(  ) A.-1 B.0 C.1 D.2...
题目
定义在R上的奇函数f(x)满足对任意的x都有f(x-1)=f(4-x)且f(x)=x,x∈(0,
3
2
)

提问时间:2020-11-08

答案
由f(x-1)=f(4-x)可得f(x)=f(3-x),
又由f(x)在R上是奇函数,即f(-x)=-f(x),f(0)=0,
有f(x)=-f(-x)=-f(3+x)=f(6+x),则f(x)是周期为6的函数,
f(2012)-f(2010)=f(2)-f(0),
又由f(x)=f(3-x),则f(2)=f(3-2)=f(1)=1,
故f(2012)-f(2010)=f(2)-f(0)=1-0=1,
故选C.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.