当前位置: > 如果抛物线y=ax^2 上存在关于直线x-y+1=0对称的不同两点,则实数a的取值范围是————...
题目
如果抛物线y=ax^2 上存在关于直线x-y+1=0对称的不同两点,则实数a的取值范围是————

提问时间:2020-11-08

答案
设在抛物线上关于l对称的点为X1(x1,ax1^2),X2(x2,ax2^2)
若两直线垂直,则斜率乘积为-1
所以直线X1X2的斜率为-1
即(x2-x1)/a(x2^2-x1^2)=-1
因为X1,X2不重合,所以x2-x1不等于0
即a(x1+x2)=-1.(1)
因为抛物线y=ax^2,所以a不等于0
即x1+x2=-1/a
根据两点到直线距离相等
|x1-ax1^2+1|=|x2-ax2^2+1|
若同号,则x1-ax1^2=x2-ax2^2
即a(x1+x2)=1,与(1)式矛盾,a无解
若异号,则-x1+ax1^2-1=x2-ax2^2+1
即x1^2+x2^2=-1/a^2+2/a
联立方程组
x1+x2=-1/a
x1^2+x2^2=-1/a^2+2/a
解得,x1=(-1+根号(4a-3)/2a),x2=(-1-根号(4a-3)/2a)
因为x1不等于x2,即4a-3>0
所以a>3/4
综上所述,a>3/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.