题目
已知,如图,△ABC中,∠A=90°,AB=AC,D是BC边上的中点,E、F分别是AB、AC上的点,且BE=AF,求证:ED⊥FD.
提问时间:2020-11-08
答案
证明:连接AD,则AD=BD,如图所示:
∵AF=BE,∠B=∠DAC=45°,
∴△BED≌△AFD,
∴∠ADF=∠BDE,
又∵∠BDE+∠EDA=90°,
∴∠EDF=∠ADF+∠EDA=90°,
即ED⊥DF.
∵AF=BE,∠B=∠DAC=45°,
∴△BED≌△AFD,
∴∠ADF=∠BDE,
又∵∠BDE+∠EDA=90°,
∴∠EDF=∠ADF+∠EDA=90°,
即ED⊥DF.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点