当前位置: > 已知点Q(2,0)和圆:x^2+y^2=1,动点M到圆O的切线长与|MQ|的比为√2,求动点M的轨迹方程....
题目
已知点Q(2,0)和圆:x^2+y^2=1,动点M到圆O的切线长与|MQ|的比为√2,求动点M的轨迹方程.

提问时间:2020-11-08

答案
设 M(x,y),
则 M 到圆 O 的切线长为 √(x^2+y^2-1) ,|MQ|=√[(x-2)^2+y^2] ,
根据已知可得 x^2+y^2-1=2[(x-2)^2+y^2] ,
化简得 x^2+y^2-8x+9=0 ,这就是所求的轨迹方程 .
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.